If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+22.5t+4=0
a = -4.9; b = 22.5; c = +4;
Δ = b2-4ac
Δ = 22.52-4·(-4.9)·4
Δ = 584.65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22.5)-\sqrt{584.65}}{2*-4.9}=\frac{-22.5-\sqrt{584.65}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22.5)+\sqrt{584.65}}{2*-4.9}=\frac{-22.5+\sqrt{584.65}}{-9.8} $
| -9(6+3y)=25 | | 1+4.7p-2.915=5.5p+0.575 | | 4x^2+30x+44=120 | | 14x-171=11 | | 0.5x+2=1.5x-3 | | 2(x-4)=7x+6 | | 2*2-2x-35=0 | | -(2x-5)-(2x-5)+4=-5(x-1)-(3x+6)+3 | | -(2x-5)-(2x-5)+4=-5(x-1)-(3x+6)+3) | | 31=7+4(f-2) | | 3xX=66 | | 12n-3=60 | | 2.4n+1.2n=7.2 | | X+8x3=66 | | 1/2(x-6)+16=3x-4 | | 4(5+x)=33 | | 7=h=16 | | n/5=8-n/15 | | 800x-750x=4675 | | -7(9d+8)=35 | | A=3n+5 | | 2/5=x/30 | | 15/x=3000 | | 2a+48=10a | | A=3n+6 | | Y+3=x-2 | | 14y+1=14y-1 | | 8(3^x)=648 | | 25=-7x+2x | | y^2/3=y | | -4(x-1)=2 | | (x+1)^5=1.6105 |